首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  1997年   1篇
  1980年   1篇
排序方式: 共有24条查询结果,搜索用时 173 毫秒
1.

The compliance of the proximal aortic wall is a major determinant of cardiac afterload. Aortic compliance is often estimated based on cross-sectional area changes over the pulse pressure, under the assumption of a negligible longitudinal stretch during the pulse. However, the proximal aorta is subjected to significant axial stretch during cardiac contraction. In the present study, we sought to evaluate the importance of axial stretch on compliance estimation by undertaking both an in silico and an in vivo approach. In the computational analysis, we developed a 3-D finite element model of the proximal aorta and investigated the discrepancy between the actual wall compliance to the value estimated after neglecting the longitudinal stretch of the aorta. A parameter sensitivity analysis was further conducted to show how increased material stiffness and increased aortic root motion might amplify the estimation errors (discrepancies between actual and estimated distensibility ranging from − 20 to − 62%). Axial and circumferential aortic deformation during ventricular contraction was also evaluated in vivo based on MR images of the aorta of 3 healthy young volunteers. The in vivo results were in good qualitative agreement with the computational analysis (underestimation errors ranging from − 26 to − 44%, with increased errors reflecting higher aortic root displacement). Both the in silico and in vivo findings suggest that neglecting the longitudinal strain during contraction might lead to severe underestimation of local aortic compliance, particularly in the case of women who tend to have higher aortic root motion or in subjects with stiff aortas.

  相似文献   
2.

Background

Acute reduction in dietary energy intake reduces very low-density lipoprotein triglyceride (VLDL-TG) concentration. Although chronic dietary energy surplus and obesity are associated with hypertriglyceridemia, the effect of acute overfeeding on VLDL-TG metabolism is not known.

Objective

The aim of the present study was to investigate the effects of acute negative and positive energy balance on VLDL-TG metabolism in healthy women.

Design

Ten healthy women (age: 22.0±2.9 years, BMI: 21.2±1.3 kg/m2) underwent a stable isotopically labeled tracer infusion study to determine basal VLDL-TG kinetics after performing, in random order, three experimental trials on the previous day: i) isocaloric feeding (control) ii) hypocaloric feeding with a dietary energy restriction of 2.89±0.42 MJ and iii) hypercaloric feeding with a dietary energy surplus of 2.91±0.32 MJ. The three diets had the same macronutrient composition.

Results

Fasting plasma VLDL-TG concentrations decreased by ∼26% after hypocaloric feeding relative to the control trial (P = 0.037), owing to decreased hepatic VLDL-TG secretion rate (by 21%, P = 0.023) and increased VLDL-TG plasma clearance rate (by ∼12%, P = 0.016). Hypercaloric feeding increased plasma glucose concentration (P = 0.042) but had no effect on VLDL-TG concentration and kinetics compared to the control trial.

Conclusion

Acute dietary energy deficit (∼3MJ) leads to hypotriglyceridemia via a combination of decreased hepatic VLDL-TG secretion and increased VLDL-TG clearance. On the other hand, acute dietary energy surplus (∼3MJ) does not affect basal VLDL-TG metabolism but disrupts glucose homeostasis in healthy women.  相似文献   
3.
Targeted covalent inhibitors of urease were developed on the basis of the catechol structure. Forty amide and ester derivatives of 3,4-dihydroxyphenylacetic acid, caffeic acid, ferulic acid and gallic acid were obtained and screened against Sporosarcinia pasteurii urease. The most active compound, namely propargyl ester of 3,4-dihydroxyphenylacetic acid exhibited IC50?=?518?nM andkinact/Ki?=?1379?M?1?s?1. Inhibitory activity of this compound was better and toxicity lower than those obtained for the starting compound – catechol. The molecular modelling studies revealed a mode of binding consistent with structure-activity relationships.  相似文献   
4.
Tetraselmis sp. and Nannochloropsis oculata, cultivated in industrial‐scale bioreactors, produced 2.33 and 2.44% w/w lipid (calculated as the sum of fatty acid methyl esters) in dry biomass, respectively. These lipids contained higher amounts of neutral lipids and glycolipids plus sphingolipids, than phospholipids. Lipids of Tetraselmis sp. were characterized by the presence of eicosapentaenoic acid (that was located mainly in phospholipids), and octadecatetraenoic acid (that was equally distributed among lipid fractions), while these fatty acids were completely absent in N. oculata lipids. Additionally, lipids produced by 16 newly isolated strains from Greek aquatic environments (cultivated in flask reactors) were studied. The highest percentage of lipids was found in Prorocentrum triestinum (3.69% w/w) while the lowest in Prymnesium parvum (0.47% w/w). Several strains produced lipids rich in eicosapentaenoic and docosahexaenoic acids. For instance, docosahexaenoic acid was found in high percentages in lipids of Amphidinium sp. S1, P. parvum, Prorocentrum minimum and P. triestinum, while lipids produced by Asterionella sp. (?) S2 contained eicosapentaenoic acid in high concentration. These lipids, containing ω‐3‐long‐chain polyunsaturated fatty acids, have important applications in the food and pharmaceutical industries and in aquaculture.  相似文献   
5.
In the last few years, there has been an intense interest in using microalgal lipids in food, chemical and pharmaceutical industries and cosmetology, while a noteworthy research has been performed focusing on all aspects of microalgal lipid production. This includes basic research on the pathways of solar energy conversion and on lipid biosynthesis and catabolism, and applied research dealing with the various biological and technical bottlenecks of the lipid production process. In here, we review the current knowledge in microalgal lipids with respect to their metabolism and various biotechnological applications, and we discuss potential future perspectives.  相似文献   
6.
The role of IκB kinase (IKK)-induced proteolysis of NF-κB1 p105 in innate immune signaling was investigated using macrophages from Nfkb1(SSAA/SSAA) mice, in which the IKK target serines on p105 are mutated to alanines. We found that the IKK/p105 signaling pathway was essential for TPL-2 kinase activation of extracellular signal-regulated kinase (ERK) mitogen-activate protein (MAP) kinase and modulated the activation of NF-κB. The Nfkb1(SSAA) mutation prevented the agonist-induced release of TPL-2 from its inhibitor p105, which blocked activation of ERK by lipopolysaccharide (LPS), tumor necrosis factor (TNF), CpG, tripalmitoyl-Cys-Ser-Lys (Pam(3)CSK), poly(I · C), flagellin, and R848. The Nfkb1(SSAA) mutation also prevented LPS-induced processing of p105 to p50 and reduced p50 levels, in addition to decreasing the nuclear translocation of RelA and cRel. Reduced p50 in Nfkb1(SSAA/SSAA) macrophages significantly decreased LPS induction of the IκBζ-regulated Il6 and Csf2 genes. LPS upregulation of Il12a and Il12b mRNAs was also impaired although specific blockade of TPL-2 signaling increased expression of these genes at late time points. Activation of TPL-2/ERK signaling by IKK-induced p105 proteolysis, therefore, induced a negative feedback loop to downregulate NF-κB-dependent expression of the proinflammatory cytokine interleukin-12 (IL-12). Unexpectedly, TPL-2 promoted soluble TNF production independently of IKK-induced p105 phosphorylation and its ability to activate ERK, which has important implications for the development of anti-inflammatory drugs targeting TPL-2.  相似文献   
7.
A member of the M18 family of aspartyl aminopeptidases is expressed by all intra-erythrocytic stages of the human malaria parasite Plasmodium falciparum (PfM18AAP), with highest expression levels in rings. Functionally active recombinant enzyme, rPfM18AAP, and native enzyme in cytosolic extracts of malaria parasites are 560-kDa octomers that exhibit optimal activity at neutral pH and require the presence of metal ions to maintain enzymatic activity and stability. Like the human aspartyl aminopeptidase, the exopeptidase activity of PfM18AAP is exclusive to N-terminal acidic amino acids, glutamate and aspartate, making this enzyme of particular interest and suggesting that it may function alongside the malaria cytosolic neutral aminopeptidases in the release of amino acids from host hemoglobin-derived peptides. Whereas immunocytochemical studies using transgenic P. falciparum parasites show that PfM18AAP is expressed in the cytosol, immunoblotting experiments revealed that the enzyme is also trafficked out of the parasite into the surrounding parasitophorous vacuole. Antisense-mediated knockdown of PfM18AAP results in a lethal phenotype as a result of significant intracellular damage and validates this enzyme as a target at which novel antimalarial drugs could be directed. Novel phosphinic derivatives of aspartate and glutamate showed modest inhibition of rPfM18AAP but did not inhibit malaria growth in culture. However, we were able to draw valuable observations concerning the structure-activity relationship of these inhibitors that can be employed in future inhibitor optimization studies.  相似文献   
8.
OBJECTIVE: To investigate the potential association between serum inflammatory cytokine levels and thyroxine replacement dose in patients with Hashimoto disease. PATIENTS AND METHODS: The study included 40 patients (12 men) with a mean age of 56.52+/-6.12 years who had hypothyroidism due to Hashimoto disease. Serum interleukin-1b (IL-1b), tumour necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6) levels, as well as TSH, T(3) and T(4) were measured (ELISA). RESULTS: Serum IL-6 showed a significant positive correlation both with total thyroxine replacement dose (r=0.551, p=0.001) and with dose per kilogram of body weight (r=0.482, p=0.002). There was also a significant negative linear correlation between serum IL6 and T(3) (r=-0.322, p=0.043), as well as between serum IL6 and T(3)/T(4) ratio (r=-0.332, p=0.036). A further significant (r=0.419, p=0.007) positive association was demonstrated between IL6 and TNF-alpha. However, no association was found between T(3) or T(3)/T(4) ratio and TNF-alpha or IL1b. CONCLUSIONS: In patients with Hashimoto disease serum IL-6 levels are positively associated with thyroxine replacement dose and negatively associated with T(3) and T(3)/T(4) ratio. These results are possibly attributable to the inhibitory effect of IL6 on deiodination of T(3) and imply a role for IL6 in determining thyroxine replacement dose among these patients.  相似文献   
9.
Although NF-κB1 p50/p105 has critical roles in immunity, the mechanism by which NF-κB1 regulates inflammatory responses is unclear. In this study, we analyzed the gene expression profile of LPS-stimulated Nfkb1(-/-) macrophages that lack both p50 and p105. Deficiency of p50/p105 selectively increased the expression of IFN-responsive genes, which correlated with increased IFN-β expression and STAT1 phosphorylation. IFN Ab-blocking experiments indicated that increased STAT1 phosphorylation and expression of IFN-responsive genes observed in the absence of p50/p105 depended upon autocrine IFN-β production. Markedly higher serum levels of IFN-β were observed in Nfkb1(-/-) mice than in wild-type mice following LPS injection, demonstrating that Nfkb1 inhibits IFN-β production under physiological conditions. TPL-2, a mitogen-activated protein kinase kinase kinase stabilized by association with the C-terminal ankyrin repeat domain of p105, negatively regulates LPS-induced IFN-β production by macrophages via activation of ERK MAPK. Retroviral expression of TPL-2 in Nfkb1(-/-) macrophages, which are deficient in endogenous TPL-2, reduced LPS-induced IFN-β secretion. Expression of the C-terminal ankyrin repeat domain of p105 in Nfkb1(-/-) macrophages, which rescued LPS activation of ERK, also inhibited IFN-β expression. These data indicate that p50/p105 negatively regulates LPS-induced IFN signaling in macrophages by stabilizing TPL-2, thereby facilitating activation of ERK.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号